使用 python 提取 pdf 中 table 中包含的文本的最佳方法是什么?
What is the best way to extract text contained within a table in a pdf using python?
我正在构建一个程序来从 pdf 中提取文本,将其放入结构化格式,然后将其发送到数据库。我有大约 1,400 个单独的 pdf,它们都遵循类似的格式,但文档总结的措辞和计划设计中的细微差别使它变得棘手。
我在 python 中玩过几个不同的 pdf 阅读器,包括 tabula-py 和 pdfminer,但其中 none 非常适合我想做的事情。 Tabula 可以很好地阅读所有文本,但是它会拉出所有内容,因为它明确地水平放置,不包括一些文本被包裹在一个盒子里的事实。例如,如果您打开我附加的示例 SBC,它显示 "What is the overall deductible?" Tabula 将读入 "What is the overall 0/Individual or...",跳过 "deductible" 这个词实际上是第一句的一部分这一事实。 (请注意,我正在使用的文件是 pdf,但我附上了 jpeg,因为我不知道如何附上 pdf。)
import tabula
df = tabula.read_pdf(*filepath*, pandas_options={'header': None))
print(df.iloc[0][0])
print(df)
最后,我真的很想能够解析出每个框中的文本,以便我可以更好地识别哪些值属于免赔额、自付费用限额,copays/coinsurance,等。我认为可能某种 OCR 可以让我识别 PDF 的哪些部分包含在蓝色矩形中,然后从那里拉出字符串,但我真的不知道从哪里开始。Sample SBC
我认为完成所需操作的最佳方法是查找并隔离文件中的单元格,然后将 OCR 应用于每个单独的单元格。
SO 中有许多解决方案,我从 获得了代码并稍微调整了一些参数以获得以下输出(尚不完美,但您可以对其进行调整一点点自己)。
import os
import cv2
import imutils
# This only works if there's only one table on a page
# Important parameters:
# - morph_size
# - min_text_height_limit
# - max_text_height_limit
# - cell_threshold
# - min_columns
def pre_process_image(img, save_in_file, morph_size=(23, 23)):
# get rid of the color
pre = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Otsu threshold
pre = cv2.threshold(pre, 250, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# dilate the text to make it solid spot
cpy = pre.copy()
struct = cv2.getStructuringElement(cv2.MORPH_RECT, morph_size)
cpy = cv2.dilate(~cpy, struct, anchor=(-1, -1), iterations=1)
pre = ~cpy
if save_in_file is not None:
cv2.imwrite(save_in_file, pre)
return pre
def find_text_boxes(pre, min_text_height_limit=20, max_text_height_limit=120):
# Looking for the text spots contours
contours, _ = cv2.findContours(pre, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Getting the texts bounding boxes based on the text size assumptions
boxes = []
for contour in contours:
box = cv2.boundingRect(contour)
h = box[3]
if min_text_height_limit < h < max_text_height_limit:
boxes.append(box)
return boxes
def find_table_in_boxes(boxes, cell_threshold=100, min_columns=3):
rows = {}
cols = {}
# Clustering the bounding boxes by their positions
for box in boxes:
(x, y, w, h) = box
col_key = x // cell_threshold
row_key = y // cell_threshold
cols[row_key] = [box] if col_key not in cols else cols[col_key] + [box]
rows[row_key] = [box] if row_key not in rows else rows[row_key] + [box]
# Filtering out the clusters having less than 2 cols
table_cells = list(filter(lambda r: len(r) >= min_columns, rows.values()))
# Sorting the row cells by x coord
table_cells = [list(sorted(tb)) for tb in table_cells]
# Sorting rows by the y coord
table_cells = list(sorted(table_cells, key=lambda r: r[0][1]))
return table_cells
def build_lines(table_cells):
if table_cells is None or len(table_cells) <= 0:
return [], []
max_last_col_width_row = max(table_cells, key=lambda b: b[-1][2])
max_x = max_last_col_width_row[-1][0] + max_last_col_width_row[-1][2]
max_last_row_height_box = max(table_cells[-1], key=lambda b: b[3])
max_y = max_last_row_height_box[1] + max_last_row_height_box[3]
hor_lines = []
ver_lines = []
for box in table_cells:
x = box[0][0]
y = box[0][1]
hor_lines.append((x, y, max_x, y))
for box in table_cells[0]:
x = box[0]
y = box[1]
ver_lines.append((x, y, x, max_y))
(x, y, w, h) = table_cells[0][-1]
ver_lines.append((max_x, y, max_x, max_y))
(x, y, w, h) = table_cells[0][0]
hor_lines.append((x, max_y, max_x, max_y))
return hor_lines, ver_lines
if __name__ == "__main__":
in_file = os.path.join(".", "test.jpg")
pre_file = os.path.join(".", "pre.png")
out_file = os.path.join(".", "out.png")
img = cv2.imread(os.path.join(in_file))
pre_processed = pre_process_image(img, pre_file)
text_boxes = find_text_boxes(pre_processed)
cells = find_table_in_boxes(text_boxes)
hor_lines, ver_lines = build_lines(cells)
# Visualize the result
vis = img.copy()
# for box in text_boxes:
# (x, y, w, h) = box
# cv2.rectangle(vis, (x, y), (x + w - 2, y + h - 2), (0, 255, 0), 1)
for line in hor_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
for line in ver_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
cv2.imwrite(out_file, vis)
@jpnadas 在这种情况下,您从我在 的答案中复制的代码并不是真正的 suitable 因为它解决了 table 没有周围的情况网格。该算法寻找重复的文本块,并尝试以启发式方式找到类似于 table 的模式。
但在这种特殊情况下,table 确实有网格,利用这一优势,我们可以获得更准确的结果。
策略如下:
- 增加图像 Gamma 使网格更暗
- 去除颜色并应用 Otsu 阈值处理
- 在图像中找到长的垂直线和水平线,并使用
erode
和 dilate
函数从中创建蒙版
- 使用
findContours
函数在掩码中查找单元块。
找到 table 个对象
5.1 剩下的可以和post一样找一个table不用
网格:启发式查找table结构
5.2 替代方法可以使用 findContours
函数返回的 hierarchy
。这种方法更加准确和
允许在单个图像上查找多个 table。
有了细胞坐标就很容易从原始图像中提取特定的细胞图像:
cell_image = image[cell_y:cell_y + cell_h, cell_x:cell_x + cell_w]
对每个cell_image
应用OCR。
但是!当您无法读取 PDF 的内容时,我认为 OpenCV 方法是最后的手段:例如,当 PDF 中包含光栅图像时。
如果它是基于矢量的 PDF 并且其内容是可读的,那么找到 table 内部内容并从中读取文本而不是做繁重的 'OCR lifting' 更有意义。
为了更准确table识别,参考代码如下:
import os
import imutils
import numpy as np
import argparse
import cv2
def gamma_correction(image, gamma = 1.0):
look_up_table = np.empty((1,256), np.uint8)
for i in range(256):
look_up_table[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
result = cv2.LUT(image, look_up_table)
return result
def pre_process_image(image):
# Let's get rid of color first
# Applying gamma to make the table lines darker
gamma = gamma_correction(image, 2)
# Getting rid of color
gray = cv2.cvtColor(gamma, cv2.COLOR_BGR2GRAY)
# Then apply Otsu threshold to reveal important areas
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# inverting the thresholded image
return ~thresh
def get_horizontal_lines_mask(image, horizontal_size=100):
horizontal = image.copy()
horizontal_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1))
horizontal = cv2.erode(horizontal, horizontal_structure, anchor=(-1, -1), iterations=1)
horizontal = cv2.dilate(horizontal, horizontal_structure, anchor=(-1, -1), iterations=1)
return horizontal
def get_vertical_lines_mask(image, vertical_size=100):
vertical = image.copy()
vertical_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, vertical_size))
vertical = cv2.erode(vertical, vertical_structure, anchor=(-1, -1), iterations=1)
vertical = cv2.dilate(vertical, vertical_structure, anchor=(-1, -1), iterations=1)
return vertical
def make_lines_mask(preprocessed, min_horizontal_line_size=100, min_vertical_line_size=100):
hor = get_horizontal_lines_mask(preprocessed, min_horizontal_line_size)
ver = get_vertical_lines_mask(preprocessed, min_vertical_line_size)
mask = np.zeros((preprocessed.shape[0], preprocessed.shape[1], 1), dtype=np.uint8)
mask = cv2.bitwise_or(mask, hor)
mask = cv2.bitwise_or(mask, ver)
return ~mask
def find_cell_boxes(mask):
# Looking for the text spots contours
# OpenCV 3
# img, contours, hierarchy = cv2.findContours(pre, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# OpenCV 4
contours = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
image_width = mask.shape[1]
# Getting the texts bounding boxes based on the text size assumptions
boxes = []
for contour in contours:
box = cv2.boundingRect(contour)
w = box[2]
# Excluding the page box shape but adding smaller boxes
if w < 0.95 * image_width:
boxes.append(box)
return boxes
def find_table_in_boxes(boxes, cell_threshold=10, min_columns=2):
rows = {}
cols = {}
# Clustering the bounding boxes by their positions
for box in boxes:
(x, y, w, h) = box
col_key = x // cell_threshold
row_key = y // cell_threshold
cols[row_key] = [box] if col_key not in cols else cols[col_key] + [box]
rows[row_key] = [box] if row_key not in rows else rows[row_key] + [box]
# Filtering out the clusters having less than 2 cols
table_cells = list(filter(lambda r: len(r) >= min_columns, rows.values()))
# Sorting the row cells by x coord
table_cells = [list(sorted(tb)) for tb in table_cells]
# Sorting rows by the y coord
table_cells = list(sorted(table_cells, key=lambda r: r[0][1]))
return table_cells
def build_vertical_lines(table_cells):
if table_cells is None or len(table_cells) <= 0:
return [], []
max_last_col_width_row = max(table_cells, key=lambda b: b[-1][2])
max_x = max_last_col_width_row[-1][0] + max_last_col_width_row[-1][2]
max_last_row_height_box = max(table_cells[-1], key=lambda b: b[3])
max_y = max_last_row_height_box[1] + max_last_row_height_box[3]
hor_lines = []
ver_lines = []
for box in table_cells:
x = box[0][0]
y = box[0][1]
hor_lines.append((x, y, max_x, y))
for box in table_cells[0]:
x = box[0]
y = box[1]
ver_lines.append((x, y, x, max_y))
(x, y, w, h) = table_cells[0][-1]
ver_lines.append((max_x, y, max_x, max_y))
(x, y, w, h) = table_cells[0][0]
hor_lines.append((x, max_y, max_x, max_y))
return hor_lines, ver_lines
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to images directory")
args = vars(ap.parse_args())
in_file = args["image"]
filename_base = in_file.replace(os.path.splitext(in_file)[1], "")
img = cv2.imread(in_file)
pre_processed = pre_process_image(img)
# Visualizing pre-processed image
cv2.imwrite(filename_base + ".pre.png", pre_processed)
lines_mask = make_lines_mask(pre_processed, min_horizontal_line_size=1800, min_vertical_line_size=500)
# Visualizing table lines mask
cv2.imwrite(filename_base + ".mask.png", lines_mask)
cell_boxes = find_cell_boxes(lines_mask)
cells = find_table_in_boxes(cell_boxes)
# apply OCR to each cell rect here
# the cells array contains cell coordinates in tuples (x, y, w, h)
hor_lines, ver_lines = build_vertical_lines(cells)
# Visualize the table lines
vis = img.copy()
for line in hor_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
for line in ver_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
cv2.imwrite(filename_base + ".result.png", vis)
一些参数是硬编码的:
页面大小阈值 - 0.95
最小水平线大小 - 1800 像素
最小垂直线大小 - 500 像素
您可以将它们作为可配置参数提供,或者使它们与图像大小相关。
结果:
我正在构建一个程序来从 pdf 中提取文本,将其放入结构化格式,然后将其发送到数据库。我有大约 1,400 个单独的 pdf,它们都遵循类似的格式,但文档总结的措辞和计划设计中的细微差别使它变得棘手。
我在 python 中玩过几个不同的 pdf 阅读器,包括 tabula-py 和 pdfminer,但其中 none 非常适合我想做的事情。 Tabula 可以很好地阅读所有文本,但是它会拉出所有内容,因为它明确地水平放置,不包括一些文本被包裹在一个盒子里的事实。例如,如果您打开我附加的示例 SBC,它显示 "What is the overall deductible?" Tabula 将读入 "What is the overall 0/Individual or...",跳过 "deductible" 这个词实际上是第一句的一部分这一事实。 (请注意,我正在使用的文件是 pdf,但我附上了 jpeg,因为我不知道如何附上 pdf。)
import tabula
df = tabula.read_pdf(*filepath*, pandas_options={'header': None))
print(df.iloc[0][0])
print(df)
最后,我真的很想能够解析出每个框中的文本,以便我可以更好地识别哪些值属于免赔额、自付费用限额,copays/coinsurance,等。我认为可能某种 OCR 可以让我识别 PDF 的哪些部分包含在蓝色矩形中,然后从那里拉出字符串,但我真的不知道从哪里开始。Sample SBC
我认为完成所需操作的最佳方法是查找并隔离文件中的单元格,然后将 OCR 应用于每个单独的单元格。
SO 中有许多解决方案,我从
import os
import cv2
import imutils
# This only works if there's only one table on a page
# Important parameters:
# - morph_size
# - min_text_height_limit
# - max_text_height_limit
# - cell_threshold
# - min_columns
def pre_process_image(img, save_in_file, morph_size=(23, 23)):
# get rid of the color
pre = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Otsu threshold
pre = cv2.threshold(pre, 250, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# dilate the text to make it solid spot
cpy = pre.copy()
struct = cv2.getStructuringElement(cv2.MORPH_RECT, morph_size)
cpy = cv2.dilate(~cpy, struct, anchor=(-1, -1), iterations=1)
pre = ~cpy
if save_in_file is not None:
cv2.imwrite(save_in_file, pre)
return pre
def find_text_boxes(pre, min_text_height_limit=20, max_text_height_limit=120):
# Looking for the text spots contours
contours, _ = cv2.findContours(pre, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Getting the texts bounding boxes based on the text size assumptions
boxes = []
for contour in contours:
box = cv2.boundingRect(contour)
h = box[3]
if min_text_height_limit < h < max_text_height_limit:
boxes.append(box)
return boxes
def find_table_in_boxes(boxes, cell_threshold=100, min_columns=3):
rows = {}
cols = {}
# Clustering the bounding boxes by their positions
for box in boxes:
(x, y, w, h) = box
col_key = x // cell_threshold
row_key = y // cell_threshold
cols[row_key] = [box] if col_key not in cols else cols[col_key] + [box]
rows[row_key] = [box] if row_key not in rows else rows[row_key] + [box]
# Filtering out the clusters having less than 2 cols
table_cells = list(filter(lambda r: len(r) >= min_columns, rows.values()))
# Sorting the row cells by x coord
table_cells = [list(sorted(tb)) for tb in table_cells]
# Sorting rows by the y coord
table_cells = list(sorted(table_cells, key=lambda r: r[0][1]))
return table_cells
def build_lines(table_cells):
if table_cells is None or len(table_cells) <= 0:
return [], []
max_last_col_width_row = max(table_cells, key=lambda b: b[-1][2])
max_x = max_last_col_width_row[-1][0] + max_last_col_width_row[-1][2]
max_last_row_height_box = max(table_cells[-1], key=lambda b: b[3])
max_y = max_last_row_height_box[1] + max_last_row_height_box[3]
hor_lines = []
ver_lines = []
for box in table_cells:
x = box[0][0]
y = box[0][1]
hor_lines.append((x, y, max_x, y))
for box in table_cells[0]:
x = box[0]
y = box[1]
ver_lines.append((x, y, x, max_y))
(x, y, w, h) = table_cells[0][-1]
ver_lines.append((max_x, y, max_x, max_y))
(x, y, w, h) = table_cells[0][0]
hor_lines.append((x, max_y, max_x, max_y))
return hor_lines, ver_lines
if __name__ == "__main__":
in_file = os.path.join(".", "test.jpg")
pre_file = os.path.join(".", "pre.png")
out_file = os.path.join(".", "out.png")
img = cv2.imread(os.path.join(in_file))
pre_processed = pre_process_image(img, pre_file)
text_boxes = find_text_boxes(pre_processed)
cells = find_table_in_boxes(text_boxes)
hor_lines, ver_lines = build_lines(cells)
# Visualize the result
vis = img.copy()
# for box in text_boxes:
# (x, y, w, h) = box
# cv2.rectangle(vis, (x, y), (x + w - 2, y + h - 2), (0, 255, 0), 1)
for line in hor_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
for line in ver_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
cv2.imwrite(out_file, vis)
@jpnadas 在这种情况下,您从我在
但在这种特殊情况下,table 确实有网格,利用这一优势,我们可以获得更准确的结果。
策略如下:
- 增加图像 Gamma 使网格更暗
- 去除颜色并应用 Otsu 阈值处理
- 在图像中找到长的垂直线和水平线,并使用
erode
和dilate
函数从中创建蒙版 - 使用
findContours
函数在掩码中查找单元块。 找到 table 个对象
5.1 剩下的可以和post一样找一个table不用 网格:启发式查找table结构
5.2 替代方法可以使用
findContours
函数返回的hierarchy
。这种方法更加准确和 允许在单个图像上查找多个 table。有了细胞坐标就很容易从原始图像中提取特定的细胞图像:
cell_image = image[cell_y:cell_y + cell_h, cell_x:cell_x + cell_w]
对每个
cell_image
应用OCR。
但是!当您无法读取 PDF 的内容时,我认为 OpenCV 方法是最后的手段:例如,当 PDF 中包含光栅图像时。
如果它是基于矢量的 PDF 并且其内容是可读的,那么找到 table 内部内容并从中读取文本而不是做繁重的 'OCR lifting' 更有意义。
为了更准确table识别,参考代码如下:
import os
import imutils
import numpy as np
import argparse
import cv2
def gamma_correction(image, gamma = 1.0):
look_up_table = np.empty((1,256), np.uint8)
for i in range(256):
look_up_table[0,i] = np.clip(pow(i / 255.0, gamma) * 255.0, 0, 255)
result = cv2.LUT(image, look_up_table)
return result
def pre_process_image(image):
# Let's get rid of color first
# Applying gamma to make the table lines darker
gamma = gamma_correction(image, 2)
# Getting rid of color
gray = cv2.cvtColor(gamma, cv2.COLOR_BGR2GRAY)
# Then apply Otsu threshold to reveal important areas
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
# inverting the thresholded image
return ~thresh
def get_horizontal_lines_mask(image, horizontal_size=100):
horizontal = image.copy()
horizontal_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (horizontal_size, 1))
horizontal = cv2.erode(horizontal, horizontal_structure, anchor=(-1, -1), iterations=1)
horizontal = cv2.dilate(horizontal, horizontal_structure, anchor=(-1, -1), iterations=1)
return horizontal
def get_vertical_lines_mask(image, vertical_size=100):
vertical = image.copy()
vertical_structure = cv2.getStructuringElement(cv2.MORPH_RECT, (1, vertical_size))
vertical = cv2.erode(vertical, vertical_structure, anchor=(-1, -1), iterations=1)
vertical = cv2.dilate(vertical, vertical_structure, anchor=(-1, -1), iterations=1)
return vertical
def make_lines_mask(preprocessed, min_horizontal_line_size=100, min_vertical_line_size=100):
hor = get_horizontal_lines_mask(preprocessed, min_horizontal_line_size)
ver = get_vertical_lines_mask(preprocessed, min_vertical_line_size)
mask = np.zeros((preprocessed.shape[0], preprocessed.shape[1], 1), dtype=np.uint8)
mask = cv2.bitwise_or(mask, hor)
mask = cv2.bitwise_or(mask, ver)
return ~mask
def find_cell_boxes(mask):
# Looking for the text spots contours
# OpenCV 3
# img, contours, hierarchy = cv2.findContours(pre, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# OpenCV 4
contours = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key=cv2.contourArea, reverse=True)
image_width = mask.shape[1]
# Getting the texts bounding boxes based on the text size assumptions
boxes = []
for contour in contours:
box = cv2.boundingRect(contour)
w = box[2]
# Excluding the page box shape but adding smaller boxes
if w < 0.95 * image_width:
boxes.append(box)
return boxes
def find_table_in_boxes(boxes, cell_threshold=10, min_columns=2):
rows = {}
cols = {}
# Clustering the bounding boxes by their positions
for box in boxes:
(x, y, w, h) = box
col_key = x // cell_threshold
row_key = y // cell_threshold
cols[row_key] = [box] if col_key not in cols else cols[col_key] + [box]
rows[row_key] = [box] if row_key not in rows else rows[row_key] + [box]
# Filtering out the clusters having less than 2 cols
table_cells = list(filter(lambda r: len(r) >= min_columns, rows.values()))
# Sorting the row cells by x coord
table_cells = [list(sorted(tb)) for tb in table_cells]
# Sorting rows by the y coord
table_cells = list(sorted(table_cells, key=lambda r: r[0][1]))
return table_cells
def build_vertical_lines(table_cells):
if table_cells is None or len(table_cells) <= 0:
return [], []
max_last_col_width_row = max(table_cells, key=lambda b: b[-1][2])
max_x = max_last_col_width_row[-1][0] + max_last_col_width_row[-1][2]
max_last_row_height_box = max(table_cells[-1], key=lambda b: b[3])
max_y = max_last_row_height_box[1] + max_last_row_height_box[3]
hor_lines = []
ver_lines = []
for box in table_cells:
x = box[0][0]
y = box[0][1]
hor_lines.append((x, y, max_x, y))
for box in table_cells[0]:
x = box[0]
y = box[1]
ver_lines.append((x, y, x, max_y))
(x, y, w, h) = table_cells[0][-1]
ver_lines.append((max_x, y, max_x, max_y))
(x, y, w, h) = table_cells[0][0]
hor_lines.append((x, max_y, max_x, max_y))
return hor_lines, ver_lines
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="path to images directory")
args = vars(ap.parse_args())
in_file = args["image"]
filename_base = in_file.replace(os.path.splitext(in_file)[1], "")
img = cv2.imread(in_file)
pre_processed = pre_process_image(img)
# Visualizing pre-processed image
cv2.imwrite(filename_base + ".pre.png", pre_processed)
lines_mask = make_lines_mask(pre_processed, min_horizontal_line_size=1800, min_vertical_line_size=500)
# Visualizing table lines mask
cv2.imwrite(filename_base + ".mask.png", lines_mask)
cell_boxes = find_cell_boxes(lines_mask)
cells = find_table_in_boxes(cell_boxes)
# apply OCR to each cell rect here
# the cells array contains cell coordinates in tuples (x, y, w, h)
hor_lines, ver_lines = build_vertical_lines(cells)
# Visualize the table lines
vis = img.copy()
for line in hor_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
for line in ver_lines:
[x1, y1, x2, y2] = line
cv2.line(vis, (x1, y1), (x2, y2), (0, 0, 255), 1)
cv2.imwrite(filename_base + ".result.png", vis)
一些参数是硬编码的:
页面大小阈值 - 0.95
最小水平线大小 - 1800 像素
最小垂直线大小 - 500 像素
您可以将它们作为可配置参数提供,或者使它们与图像大小相关。
结果: